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Management Summary

This deliverable D3.5.1 is the final deliverable of task T3.5, Dynamics of Stochastic Models
(due M48).

Key takeaways:

• We introduce metamodels for attack trees, to describe the variety of input/output
formats of the various WP3 analysis tools, which are due to the rich variation in
analysis metrics and analysis algorithms.

• We introduce and demonstrate model transformation, as a means to provide inter-
operability, not only between the various analysis tools, but also with the models of
the surrounding tools in the tool diagram.

• We show how model transformation and unique model identifiers help in propa-
gating changes forward through the analysis models, and tracing analysis results
backwards to the original sociotechnical model.

• We extend the dynamics of stochastic models by suggesting an easy-to-use infras-
tructure of updating the domain-dependent data (like attack patterns and statistical
data), and to analyse the impact of uncertain data on the analysis results through
sensitivity analysis.

• We show how a compositional modeling framework, combined with automatic model
transformation, can gain efficiency by offering incremental generation and analysis
of stochastic models, improving the response time of the tools when used during an
interactive design exploration session.
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1 Introduction

Socio-technical models tend to be complex – both due to the order of their size and due to
the causal interactions that characterise their behaviour. A prime objective of the TRES-
PASS modelling language is to provide its users with the flexibility to construct an at-
tack scenario that adequately captures the architectural description of his organization.
Hence in TRESPASS, the architecture modelling language (socio-technical model) is in-
tentionally kept flexible with a rich user interface and a separate model pattern library (The
TRESPASS Project, D6.4.3, 2016; The TRESPASS Project, D4.3.3, 2016; The TRESPASS
Project, D5.3.2, 2015), facilitating reuse of domain knowledge. These attack scenarios are
further transformed and represented as attack trees and attack defense trees (defined by
an attack DSL (domain specific language).

These attack defense trees are further analysed with different analysis tools developed
in the project – e.g. ADTool, ApproxTree+, ATAnalyzer, ATevaluator, ATCalc, and ATtop
(The TRESPASS Project, D3.4.2, 2016). All these tools operate by extracting (explicitly or
implicitly) and analysing some stochastic state-transition-system from the attack defense
tree. This rich set of analysis tools complement each other, and are designed with the aim
to quantify various risk scenarios and risk estimation parameters, while the complexity of
the analysis algorithms themselves is kept under the hood. All these tools, however, have
different input/output formats. As the analysis algorithms are tightly coupled to the attack
scenario, any change or update in the architecture model, or in the attack pattern library,
means that a fresh attack tree must be regenerated, on which the analysis tools have to
be used. The Deliverable (The TRESPASS Project, D5.3.3, 2016) elaborates further on
the implication of model maintenance, model sharing and model update in the presence
of a change either in the threat landscape, or in the evolution of the organization, or in the
availability of richer or more up-to-date data sources.

This deliverable reports on Task 3.5.1, focusing on the re-generation of the stochastic
models, their re-analysis, and the re-intrepretation of the analysis results after the some of
the changes mentioned before happened. The general question is what would be the con-
sequences of a change in some of the inputs on the risk assessment, how such changes
in the input are propagated between the various models and tools, how an incremen-
tal analysis method can be performed more efficiently, and how the analysis results are
propagated back to the models and the user.

Thus, a user is assisted in design exploration, by changing the current scenario, either
by editing the architectural model or by incorporating new data, and by rerunning the
analysis methods completely automatically, in order to learn the impact of the changes to
the original model, be it positive or negative.

2016-10-31 ICT-318003 1
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1.1 Dynamics in socio-technical models: definitions and
terminology

The WP3 analysis tools take as input attack defense trees, for instance those generated
automatically from a socio-technical model (architectural model) created in the attack navi-
gator map user interface (The TRESPASS Project, D3.4.1, 2014). The generation consists
of two stages: Treemaker generates attack trees at the granularity of the socio-technical
model, and the Attack Pattern Library refines them based on standard attack patterns,
and adds quantitative data obtained from a data base. Essentially, by viewing the TRES-
PASS modeling approach as a chain of models, processes and tools, dynamics can be
embedded at multiple levels. In this deliverable, we report on the current interpretation
of the dynamics of socio-technical models, addressing those different perspectives, four
years after writing the Description of Work:

• First, dynamics refers to the glue between different models and supporting tools
(data format transformations): In this view, we put Model Transformation as the inte-
grating technique to manage change in the presence of model and tool variety. The
maturity level of the project, the integration of tools and processes (as visualised in
the integration diagram (The TRESPASS Project, D6.4.3, 2016)) and the scientific
development of the analysis tools within WP3 over time (each having different In-
put/ Output formats) required a common knit to tie all the components in one single
framework. By defining a generic metamodel (Section 2, based on (Huistra, 2015))
for attack defense trees, and by performing a horizontal transformation between sev-
eral source and target data models, we have been able to establish coherence be-
tween the different analysis tools. This allows to combine and reuse various analysis
tools in unforeseen ways, like computing Pareto frontiers by tool X on attack trees
edited by the GUI of tool Y.

• Second, dynamics is interpreted as a means to propagate changes and to main-
tain consistency: The attack tree model generated from the socio-technical model
through the Treemaker bears unique identifiers. Together with automated model
transformation, using these identifiers ensures that all model artefacts stay consis-
tent and reflect the new situation after changes to the architectural model or data
bases happened. This is a bidirectional process: unique identifiers and model trans-
formation are also used to trace back elements in the attack DSLs to the socio-
technical models (cf. Section 3).

• Third, proper dynamics should ensure back propagation of analysis results to the
model: The output of the analysis tools is either an attack trace or a nominal value
that indicates the impact, execution time or skill level to reach the asset. Vertical
model transformation techniques are used to automatically generate the lower level
formalism (such as stochastic timed automata (The TRESPASS Project, D3.2.1,
2015)) from the attack DSL, through metamodels of Attack Trees and UPPAAL
(Huistra, 2015; Brandt, 2016). Future work involves development of a tool supported
reversible transformations, to map the analysis results back to the attack tree model
itself. Tracing back a nominal value to either an attack model or the components in

2016-10-31 ICT-318003 2
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the socio-technical model is a nontrivial task, however. Ultimately, for the user this
can best be addressed by visually highlighting the affected components involved
in the constructed attack scenarios on the original attack navigator map(The TRES-
PASS Project, D4.3.3, 2016). In this way, the final analysis results can be interpreted
all the way back to the original sociotechnical model.

• Another aspect of proper dynamics is to pull in new data smoothly (Section 4). We
envision a data pull facility to seamlessly rerun the analysis after pulling in newly
discovered attacks and updating recent real-world data from databases representing
some application domain.

• Closely related to the dynamics of data is data sensitivity: In order to assess the
impact of the input parameters on the analysis results, Section 5 reviews several
metrics and methods to assess the data sensitivity. For instance, one can per-
form a parameter sweep (The TRESPASS Project, D3.3.2, 2015). This can be use-
ful to assess which element of the attack tree has the highest contribution to the
success probability of a particular attack. Since each element of the attack tree is
uniquely linked with the component in the socio-technical model itself, we can thus
reason, which socio-technical model component is the most crucial one, and design
a counter measure.

• Finally, the modularity of the analysis models enables incremental updates for effi-
ciency: Section 6. The analysis models in TRESPASS are built compositionally (The
TRESPASS Project, D3.2.1, 2015). A modular analysis methodology keeps the mod-
els comprehensible, so they can be used as a sub-systems in a larger system. Since
the analysis models are generated from the socio-technical model description (con-
sisting of attacker profiles, assets and policies and input parameters), we have to
regenerate and reanalyse the new attack scenarios derived from the socio-technical
model(The TRESPASS Project, D3.4.1, 2014). However, since those models are
constructed in a compositional way, after a change only a part of the stochastic
model needs to be regenerated and evaluated, potentially improving the response
time of the analysis tools during design exploration.

1.2 Foreground and Background

The background of this deliverable is formed by the TRESPASS model building phase (The
TRESPASS Project, D6.4.3, 2016), the extraction of attack DSLs using Treemaker (The
TRESPASS Project, D3.4.1, 2014), the annotations using APL and the various WP3 anal-
ysis tools with all their I/O requirements (The TRESPASS Project, D3.4.2, 2016; The
TRESPASS Project, D6.4.4, 2016). The foreground of this deliverable is constituted by
all aspects of the integration of these analysis tools, along with their ability to support in-
cremental updates in the socio-technical model, and to link changes forwards and trace
results backwards within the TRESPASS tool chain. An important ingredient of this fore-
ground is the work on metamodels of D. Huistra (UT) (Huistra, 2015).

2016-10-31 ICT-318003 3
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2 Model transformation: interoperability
and consistency

Model-driven engineering (Schmidt, 2006; Stahl, Voelter, & Czarnecki, 2006) proposes
to use models as prime artefacts in the effective design and implementation of complex
enterprise systems, not only to communicate between multiple stakeholders — system
designers, developers, security analysts and managers — but also to drive the develop-
ment process itself. The general idea is to first model all aspects of a system, from its
static software architecture to its dynamic behaviour and deployment, before proceeding
to the level of working code.

Models should be structured and documented. To ensure that this is the case, models
are usually considered to be elements of a language created especially for the domain
of discourse; a so-called domain-specific language. One of the most popular means to
define such a language is through a so-called metamodel that captures the concepts of
the domain as well as the possible relations between them. In the literature, the notions
of metamodel and domain specific language are used more or less interchangeably, even
though it is more proper to say that the former is one (and only one) way to define the
latter.

2.1 Benefits of Model-Driven Engineering

Model driven engineering has a range of potential benefits, some of which we briefly
discuss below.

• Conceptualisation and standardisation. By focussing on conceptual aspects rather
than implementation-level data structures, one is able to separate the intrinsic con-
cepts of a given domain from their incidental representation. This improves clarity by
avoiding the obfuscation of particular choices that may be imposed by the require-
ments of an executable implementation.

A well-defined domain-specific language (through a metamodel or otherwise) can
also serve as a standard representation for the concepts in the domain; models
then serve as a means of interchange between humans, as well as tools adhering
to that standard.

• Consistency and maintenance. Together with the benefits of conceptual modelling
comes the opportunity to capture and reason about inter-model consistency. Essen-
tially, every domain concept should be modelled only once and imported from there

2016-10-31 ICT-318003 4
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into every implementation context; where this is not possible, for instance due to a
multitude of implementation platforms, at least by having the different representa-
tions of a domain concept available as models, one can properly define their relation
and transformations back and forth (see also model transformation below).

• Model transformation. It is often necessary to transform models from one domain
specific language to another or even within the same language, either because im-
plementation details have to be added (sometimes called vertical transformation) or
because of differences in representation, threatening the consistency mentioned in
the previous item (horizontal transformation, or refactoring if the source and target
languages are the same). In TRESPASS we do both: horizontal model transforma-
tions between various tools, and vertical model transformation between the several
layers.

When this is set up properly, the model transformation definitions are themselves
artefacts of a domain-specific language and as such subject to analysis, evolution
and maintenance. The same benefits discussed for models in general therefore
also automatically apply to model transformation definitions. The research areas
of model tranformation is very wide, with entire conferences dedicated to the topic;
some early categorisations are given in (Czarnecki & Helsen, 2006; Mens & Gorp,
2006).

• Interoperability. In practice, in any large software system one typically has to deal
with pre-existing tools, whose input and output formats were not designed to fit to-
gether. If, as is usually the case, the artefacts being input and output represent
domain concepts, then (in the model-driven engineering method) there is bound to
be a model representation for them. This, then, can serve as an intermediate for-
mat, into which tool output can be transformed (through a process of parsing and
model-to-model transformation) and from which tool input can be generated (through
a process of model-to-text transformation).

• Change propagation. In horizontal transformation, where two representations of the
same concept are linked by model transformation definitions, there are many sce-
narios in which the source or target models are updated after a transformation has
already been executed. Such changes should then be propagated back (if it was the
target model that was updated) or forth (if it was the source model), while keeping
the models consistent. To guarantee such propagation as well as consistency au-
tomatically, an area of research is dedicated to bidirectional model transformation;
see, e.g., (Stevens, 2007).

2.2 Choice of Model Driven Engineering (MDE) technology

The principle of MDE has been picked up re-implemented in several contexts. We espe-
cially mention two of them: the OMG context and the Eclipse context.

2016-10-31 ICT-318003 5
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Object Managament Group (OMG) The Object Management Group has been a strong
early proponent of the idea of Model-Driven Engineering, primarily under the title of Model-
Driven Architecture (MDA). This has resulted in several influential standards:

• The Meta-Object Facility (MOF). This is a format for defining metamodels. In other
words, MOF is itself a domain-specific language, the elements (models) of which are
metamodels. The specification can be found at (Object Management Group (OMG),
2006).

• The Unified Modelling Language (UML). Though called a language, this is actually
a suite of domain-specific languages, defined through metamodels. Well-known
examples of models captured by one of the UML languages are class diagrams and
state diagrams. UML actually started out independently of the OMG, but they have
taken over the task of maintainance; the latest version is 2.5, to be found at (Object
Management Group (OMG), 2002).

• The Query-View-Transformation standard (QVT). This defines a domain-specific lan-
guage for model transformation definitions, where it is assumed that the source and
target languages are both defined through MOF-based metamodels. The latest ver-
sion can be found at (Object Management Group (OMG), 2015).

A fairly large number of tools have grown up around these standards. In practice, however,
it turns out that interoperability is not as good as it should have be given the existence of
a common standard. This can be explained by the facts that (1) the standards are them-
selves written up in natural language and consequently contain a number of ambiguities;
(2) there have been a number of versions of the standards, which were not always down-
ward compatible; (3) many tools implement only part of the standard.

Eclipse Modelling Framework (EMF) The Eclipse Modelling Framework1 (Steinberg,
Budinsky, Paternostro, & Merks, 2009) has been an ongoing subproject of the Eclipse
Foundation for many years, resulting in (among other things) the definition of an alternative
to MOF, called ECore. The situation is analogous to the one described above: ECore
serves as a domain-specific language in which one can define metamodels. Around this
infrastructure a large number of plugins have sprung up that support modelling and model
transformation for ECore-based languages. One important, mature such tool is Epsilon
(Kolovos, Rose, García-Domínguez, & Paige, 2016), which is actually a suite of model
transformation-related languages and tools.

In comparison to the OMG-based setting, we see the following advantages to ECore +
Epsilon: (1) ECore is simpler than MOF and hence leaves less room for ambiguities;
(2) ECore is based on a single, widespread tool (Eclipse) rather than a standard imple-
mented, potentially differently, by multiple tools; (3) Ecore and Epsilon have been devel-
oped in the academic world, are open source and have a large, dedicated user base.
For these reasons, in TRESPASS we have chosen to base our work on ECore (for the
metamodels) and Eclipse (for the model transformations).

1See https://eclipse.org/modeling/emf/

2016-10-31 ICT-318003 6
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2.3 Attack Tree metamodel

In TRESPASS, one of the central concepts for the analysis of security risks and coun-
termeasures is that of an attack tree, proposed first by Schneier (Schneier, 1999) and
later refined and formalised by, e.g., (Mauw & Oostdijk, 2005). In particular, many Attack-
Tree-based tools have been developed or extended within the course of the project, such
as ADTool, ApproxTree+, ATAnalyzer, ATevaluator, ATCalc, and ATtop, giving rise to the
situation painted in Section 2.1, where different tools centered around the same domain
concept have not been designed upfront to work together, and so require a post-hoc fix to
ensure interoperability.

2.4 Metamodel requirements

For this purpose, in (Huistra, 2015) we have defined an Attack Tree metamodel (in ECore),
with the following requirements in mind:

Support for existing formalisms. Kordy et al. in (Kordy, Piètre-Cambacédès, & Schweitzer,
2014) survey and categorise a large number of attack tree-related formalisms. In
(Huistra, 2015) we have investigated different features and settled on a set of such
formalisms that we want to cover in the metamodel. In other words, the metamodel
should be general enough to encompass all features set down in (Huistra, 2015).

Support for future extensions. The metamodel should be prepared for future exten-
sions. It should be able to evolve and support small extensions without alterations
to the metamodel and, to a certain degree, support larger extensions with minimal
alterations to the metamodel and (more importantly) without breaking existing model
instances of the metamodel.

Support for partial models. The metamodel should aim be expressive and support a
large range of (partial) attack trees (e.g. so that it can be used to develop an attack
tree in a step- by- step manner). Therefore It should not place too many restrictions
inside the metamodel that would undermine this feature. Constraints to determine
the correctness of a model should be specified externally.

Understandability. The metamodel should be intuitive to understand for domain-experts
that have more experience with attack-trees than technical aspects. It should define
domain-concepts and use names familiar to the domain-experts.

Minimality. The metamodel should aim to remain clean, minimal and easy to understand
and use. This means that full support of all extensions is not developed if this would
significantly impact the complexity of the metamodel. Extensions that are only pro-
posed by a single formalism are specifically analysed on this criteria.

Convenience of use. The metamodel should also be convenient to use/interact with. It
should model concepts and references in such a way that often performed opera-
tions on an attack tree, such as quantitative analysis, should be straightforward.

2016-10-31 ICT-318003 7
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Figure 2.1: Attack Tree metamodel in graphical representation

Support results of attack tree analysis. The metamodel should also support (i.e. be
able to model) the results that different formalisms/tools add to attack trees, so that
multiple tools can be used in succession (where each tools uses the other tools
output) and the resulting attack tree can contain the results of different analyses.

An extensive discussion of the solution is outside the scope of this deliverable; we merely
show the full metamodel (Figure 2.1).

2.5 Metamodel design choices: meeting the requirements

We list a few of the design choices made in order to meet the above requirements.

• The type of a node (AND, OR, PAND, XOR, TAND, Weighted, k-out-of-n) are mod-
elled as an optional attribute of the node. This not only allows the same classifier
“Node” to be used for both leaves and gates, but also allows for partial models,
where the tree structure is given but the nature of the gates is not yet fixed.

• The type of a node is modelled by subclasses of “Connector”, rather than an enumer-
ated type. This is an extensible solution (new kinds of gates can be accommodated

2016-10-31 ICT-318003 8



2.6 Attack Tree tool interoperability D3.5.1 v1.0

11

Figure 2.2: Overview of metamodel support for AT-related formalisms

simply by adding a subtype of “Connector” but also enables some gates to have
additional attributes, such as, for instance, the “Threshold” attribute of the k-out-of-n
gate.

• There is a “Role” classifier associated with all nodes, which enables the modeller to
distinguish attack and defense nodes.

• To add attributes to nodes, the chosen solution is to introduce the concept of a
“Domain” (standing for the value domain of an attribute; essentially its type, reflected
into the model), and have every “Attribute” point to one of those Domains. Every
“Node” can have one or more Attributes.

To show that, for example, the metamodel of attack tree meets the first of the requirements
above (“Support for existing formalisms”), Figure 2.2 cites from (Huistra, 2015) the list of
AT-related formalisms that can be represented in the metamodel.

2.6 Attack Tree tool interoperability

To demonstrate the usability of the AT metamodel in practice, we have implemented a
number of model transformations in Epsilon. Moreover, we also used Epsilonś constraint

2016-10-31 ICT-318003 9
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language to define the conditions under which some of these transformations are well-
defined. In summary, the available electronic artefacts are:

1. A model transformation definition from the XML format of ADTool to the metamodel,
using the Epsilon Transformation Language ETL (see (Huistra, 2015))

2. A model transformation definition from the metamodel to the XML format of ADTool,
using ETL (see (Huistra, 2015))

3. Validation constraints for the metamodel under which the above transformation is
well-defined, using the Epsilon Verification Language EVL (see (Huistra, 2015))

4. A model transformation definition from the metamodel to itself, expanding general
AND- and OR-nodes into binary ones, using ETL. (This is actually a case of refac-
toring rather than interoperability; however, it was used to achieve interoperability,
see below.)

5. A model-to-text transformation definition from the metamodel to the input format of
ATCalc, using the Epsilon Generation Language EGL.

With the help of these artefacts, the following interoperability scenarios were achieved:

• A transformation from ADTool models, for instance are produced by Treemaker, to
ATCalc. This is achieved by chaining transformations 1 and 5. The transforma-
tion is used in the TRESPASS tool demonstration video on https://vimeo.com/

143667223.

• A transformation from ADTool models, for instance produced by Treemaker, to AT-
Analyzer. (ATAnalyzer actually takes the XML format of ADTool as input, but cannot
cope with non-binary AND and OR nodes.) This is achieved by chaining transforma-
tions 1, 4 and 2. The transformation is used in the TRESPASS tool demonstration
video on https://vimeo.com/145070436.

2.7 Model transformation for Attack Tree analysis

Apart from the model transformations described above, which were developed for the pur-
pose of interoperability between the various analysis tools developed within TRESPASS,
we also used the Attack Tree metamodel in one of the analysis methods themselves.

From Attack Trees to UPPAAL The work on ATTop, described in (Wolters, 2016), in-
volves defining a translation from the Attack Tree formalism into UPPAAL (Behrmann,
David, & Larsen, 2004), analyzing the resulting UPPAAL models, and using the outcome
of that analysis to rank attacks.

An ECore metamodel for UPPAAL has been developed prior to our work by Gehrking et
al. in (Gerking, Schäfer, Dziwok, & Heinzemann, 2015), together with a transformation
to UPPAAL’s native XML format. It turned out to be straightforward to define a model
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transformation (in ETL) from the AT metamodel to the UPPAAL metamodel, implementing
the translation defined in (Wolters, 2016).

From UPPAAL traces to Attack Trees Once an UPPAAL model has been checked,
the results still need to be translated in terms of the original model, which is an attack
tree. This is not immediate, due to the preceding transformation from that attack tree into
UPPAAL. In (Brandt, 2016) we have studied this problem and devised a solution involving
another transformation, namely from the output traces of UPPAAL to Attack Trees. Future
work involves an implementation of this backward linkage.
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3 Propagating Analysis Results back to the
Socio-Technical Model

The attacks generated by tools such as Treemaker consider all three layers of an organ-
isation: the physical, the virtual, and the social layer. From an attack tree it is however
unclear, how much individual elements of an organisation contribute to the attack, and
what the necessary countermeasures should be. In attack trees, this information is hid-
den in the steps performed as part of the attack; it cannot be mapped back to the model
directly, since the actions usually involve several elements (attacker and targeted actor
or asset). Especially for large attack trees, quickly understanding the relations between
several model components results in a large quantity of interrelations, which are hard to
grasp.

For analysis results, the same problem exists: the analyses compute the impact or exe-
cution time or needed skills and budget for an attack, but none of these numbers is easily
expressed in the model or mapped back to it.

In this section we present several approaches for relating attributes of attacks such as like-
lihood of success, impact, and required time or skill level to the elements contributing to
those attacks (Gu, Aslanyan, & Probst, 2016). Based on analysis results, and potentially
combining results from different analyses, we annotate model elements with the quantita-
tive properties. The annotation in the knowledge base (The TRESPASS Project, D2.4.1,
2016) can influence values fed back in the analysis in the next iteration of the TRESPASS
process (The TRESPASS Project, D5.4.2, 2016).

In a first step, this information can be used for highlighting parts of the organisation that
have a significant influence, for example through the heat map in the Attack Navigator
Map (The TRESPASS Project, D4.2.2, 2016). The resulting visualisations provide a link
between attacks on an organisation and the contribution of parts of an organisation to the
attack and its impact, and can be used to guide countermeasure selection.

3.1 Values of Attack Components

The attack models generated from system models form the basis of analytic risk assess-
ment. Properties of interest (Lenin, Willemson, & Sari, 2014) of these attacks include
required resources, such as time or money, likelihood of success, or impact of the attack
based on annotations of the leaf nodes in attack trees. Analyses (Aslanyan & Nielson,
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2015a; The TRESPASS Project, D3.3.2, 2015) also identify the Pareto frontier of incom-
parable properties, for example, the likelihood of success of an attack, and the required
budget.

To compute a value such as impact or risk for an attack, every leaf node must be mapped
to some metrics. The mapping of actions to these metrics can be achieved by mapping the
action and its arguments to a specific value. These metrics can represent any quantitative
knowledge about components, for example, likelihood, time, price, impact, or probability
distributions. The latter could describe behaviour of actors or timing distributions. For
the mapping described in this section we only require an attack tree and a mapping from
its nodes to an analysis result; how leaf nodes are associated with metrics and which
analyses are performed on the tree does not influence the result.

We assume that this mapping is in place to perform the next steps, namely computing the
contribution of components of an organisation to attacks.

3.2 Contribution of Components of an Organisation to Attacks

Now we put the different elements described above together to visualise the relation be-
tween attack trees and system models. Remember that we require all elements in the
model to have unique identifiers; we use these identifiers to associate model components
and attack tree actions.

As for attack trees we need a measure for how much a model element contributes to
a given attack. We apply techniques similar to work on insiderness (Probst & Hansen,
2013).

3.2.1 Measuring Impact

Computing the actual impact of a model component on an attack is as difficult as comput-
ing the impact of an attack; the results can be used for ordering attacks or influence, but
they should not be taken as absolute answers. With this in mind we have applied several
techniques for measuring the impact of components on attacks.

The techniques presented here were chosen for their simplicity both in computing the
value and in explaining the resulting mapping. The selection is base don the assumption
that the difficult part is the computation of the impact of the analysis, which provides results
for the individual components in the attack tree. The measuring approaches presented
here only aggregate the computed impact under the assumption that more occurrences
either in total or by weighing the impact resembles the overall impact of a component.

As mentioned before we require the attack model to support extraction of actor and assets
from the actions in an attack tree, and actions are contained in the attack-tree leafs. Leaf
labels provide information about type of action, performing actor, which asset is obtained,
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and where the asset is obtained from. All this information is provided through the identifiers
that connect the attack tree with the system model.

3.2.2 Counting Occurrences

The simplest concept of measuring impact is that of counting occurrences of identifiers. It
computes for a given entity in how many places it contributes to the whole attack tree or a
path. The occurrence-based impact ignores impact, likelihood, or other analysis results.
It is either measured as absolute number or as percentage of occurrences of identifiers
in the path or tree being analysed. It is computed per identifier id for a set of nodes in a
subtree S of the attack tree that represents an attack, assuming that id ∈ S returns 1 if
true, and 0 otherwise, and that node n has successors c ∈ succ(n):

IC(id ,n) :=



[x, x] x = (id ∈ actor(n)) + (id ∈ assets(n)), if n is a leaf
node

[l, u] l = min(IC(id , c)), u = max (IC(id , c)), if n is a dis-
junctive node

[l, u] l = Σc{l′|[l′,_] = IC(id , c)}, u = Σc{u′|[_, u′] =
IC(id , c)}, if n is a conjunctive node

(3.1)

As a first crude measure, this impact provides a defender with a quick overview of which
components of the organisation actually occur in the attack tree.

The occurrence-based impact provides for every identifier a lower and an upper bound of
occurrences; for conjunctive nodes these will be sum of all the occurrences at child nodes,
for disjunctive nodes the lower bound is the minimum of the lower bounds, and the upper
bound is the maximum of the upper bounds of the child nodes. The combination of lower
and upper bounds provides a measure for how reliable the numbers are. It also allows to
identify, whether certain elements occur in all attacks: if I(id , r) = [x,_] for some identifier
id , the root r of the attack tree, and x > 0, then the element with id is contained in every
attack in the tree.

3.2.3 Weighted Sum

The impact factor based on occurrences in the generated attacks is a rather crude approx-
imation, since every occurrence of an identifier is assigned the same impact independent
of the actual contribution to the attack. Given that the analyses of attack trees described
in Section 3.1 provide us with quantitative information about attacks, we can improve over
the occurrence-based ranking by weighting occurrences of identifiers with the impact of
the attack they occur in. The factors we can choose from are limited by available analy-
ses only, but include, for example, the likelihood of success, required time, difficulty, and
cost.

In contrast to the occurrence-based impact we now include one of the analysis results, by
weighting the count for an identifier with the weight of the path, and potentially normalising
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it. As before, it is either measured as absolute number or as percentage of occurrences
of identifiers in a subtree of the tree being analysed. It is computed per identifier id for a
node on a path in the attack tree, assuming that id ∈ S returns 1 if true, and 0 otherwise,
that node n has successors c ∈ succ(n), and that val returns the result of the attack tree
analysis for a node n in the (sub-)tree p:

IW (id ,n, p) :=



vl vl = val(n, p) ? (id ∈ actor(n) + id ∈ assets(n)), if n is
a leaf node

vd vd = val(n, p) ? min(IW (id , c, p)), if n is a disjunctive
node

vca vca = val(n, p) ? ΣcIW (id , c, p), if n is a conjunctive
node and we measure difficulty, time, or cost

vcm vcm = val(n, p)?min(IW (id , c, p)), if n is a conjunctive
node and we measure likelihood of success

(3.2)

3.3 Refining Parameters

Parameters of model components provide the input for the quantitative analysis developed
in this work package and for the sensitivity analysis described in Chapter 5. The initial
values are identified through properties of the elements selected for building the model.

Later on in the TRESPASS process (The TRESPASS Project, D5.4.2, 2016), the analysis
results lead to the introduction of countermeasures. Countermeasures will most often re-
sult in changes of the parameters of a model component. For example, surveillance cam-
eras or a guard lower the risk of an attacker successfully passing a location, an awareness
training lowers the risk of a successful social-engineering attack, a fortified door increase
time and skill needed to break open a door, etc.

These changes in parameter values are triggered by analysis results or by manual ac-
tions:

• The defender who is using the TRESPASS tools can choose to manually edit the
parameter values through the ANM (The TRESPASS Project, D2.4.1, 2016);

• The defender can add countermeasures to the map and connect them to the loca-
tions in question, resulting in changed parameter values; or

• Based on the analysis results and the accumulated values for components in the
model, the ANM can suggest countermeasures for locations that significantly con-
tribute to an attack.

The first solution has the drawback that it overwrites the existing values, and that the
reason is not documented in the model. However, the data is under version control, so
changes will be captured with history, and when reasons are added to the text file, they
would be visible and kept (The TRESPASS Project, D2.4.1, 2016) This documentation is
also available in the second solution, which results in visible elements in the map. Finally,
the third solution for refining parameters can trigger both other approaches, causing either
direct changes to parameter values, or the addition of elements to the map.
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4 Propagating Data Change - Data Pull

A crucial concept of TRESPASS language is the availability of an attack navigator map
(ANM). The attack navigator model is represented by a set of files:

• socio-technical model description;

• model patterns;

• attack patterns;

• attack tree augmentation and annotation logic;

• attacker profiles;

• additional parameter sets for running the analysis tools.

Additionally, several files are available during the run time of the toolchains.

• attack tree generated by the Treemaker tool;

• attack tree generated by augmentation and annotation of the APL;

• analysis results from the ATA and ATE tools.

We refer the reader to Section 3.2 of D2.4.1 for details on the format and meaning of the
configuration files containing entries regarding the data items presented above.

A user may wish to edit some data entries – e.g. add a model or attack pattern, change
the annotation logic for attack trees, edit the attacker profiles, or tweak parameters of the
analysis algorithms, tweak the socio-technical model. This may be done in several ways.
The user can download the entire attack navigator model as an archive, edit them, and
uploading back to the server. Additionally, ANM allows to edit the configuration files in its
user interface. In order to see the impact of the changes to the original model, the user
can rerun the analysis using the TRESPASS tools.
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5 Consequence of Data Change —
Sensitivity Analysis

Viewing the TRESPASS analysis as a function from input parameters (attack tree anno-
tations) to success probabilities, we can frame input sensitivity in terms of the continuity
of this function. In previous deliverables, we proposed parameter sweeps for Markov au-
tomata (The TRESPASS Project, D3.3.2, 2015, Section 4.2.2) as a straight-forward base-
line strategy for detecting sensitivity. Here we look for more efficient algorithms and more
precise statements about when and how strongly sensitivity manifests itself. In particular,
we exploit the monotonicity of many metrics.

The TRESPASS process annotates attack tree nodes with data such as success probabil-
ity, costs in time or money, and skill requirements. Each of these values must be estimated
and can only approximate an ideal value. Moreover, they may simply change with time.
The question thus arises how (small) changes in inputs can affect the outcome.

An important question is whether the analysis represents, in some sense, a continuous
function. Even before defining this in a precise mathematical way, it is already appar-
ent that using skill and cost thresholds as filters introduces discontinuity, with a dramatic
impact on the robustness of the results: For instance, overestimating the cost of some
basic step even slightly may lift an attack vector over budget and prune it from the tree,
regardless of its impact or success probability. Therefore it becomes our goal to develop
methods to investigate input sensitivity in individual cases.

5.1 Analytical Model

In the model used for Pareto analysis as discussed in (The TRESPASS Project, D3.3.2,
2015), Section 4.3, attack trees correspond to logical formulas using standard conjunction,
disjunction, and negation (∧, ∨, ¬). Attack-defense trees are represented by adding a
“player-switching” variant of negation (∼). Each basic attack step corresponds to a variable
in the formula and is assigned a success probability and a cost. If an efficient algorithmic
evaluation is used, the tree must be linear and we may assume without loss of generality
that only ∧ and ∨ appear.1

Pareto analysis proceeds by considering boolean assignments that satisfy the attack tree
formula; a value of true assigned to a variable means that the corresponding basic action is

1Otherwise, push negation into the leaves via De Morgan’s laws and identify them as part of the correspond-
ing basic action (which appears only once by the assumption of linearity).
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taken, false that it is not. Costs and probabilities follow from this assignment. Actions that
are not taken have zero cost but may nevertheless have a non-zero incidence probability
to model cases where the effect of an action can occur independently.

An algorithm to compute the set of Pareto-efficient points with respect to probabilities and
costs is provided in (Aslanyan & Nielson, 2015b). Given such a point, and the corre-
sponding boolean assignment, an attack’s total cost and probability are given by closed
formulas. Let A and B denote subtrees of the attack tree:

P(A ∧B) = P(A) · P(B)

P(A ∨B) = 1 − (1− P(A)) · (1− P(B))

costp(A ∧B) = costp(A) + costp(B)

costp(A ∨B) = costp(A) + costp(B)

where p ∈ {attacker,defender}

The result is a multiaffine function of the basic actions’ costs and probabilities, respectively.
Its partial derivatives with respect to each input parameter form a measure for sensitivity
to that parameter, cf. (Rushdi, 1985).2

It can be seen from the formulas above that total cost is simply the sum of the basic costs;
all derivatives are 1. I.e. the output uncertainty here depends solely and equally on the
uncertainty present in each input. Attack probability, on the other hand, reduces to a linear
expression when considered as a function of one basic input. Its derivative is a constant
that depends on the rest of the parameters.

d

dP(A)
P(A ∧B) = P(B)

d

dP(A)
P(A ∨B) = 1− P(B)

(Note how P(A) does not appear on the right-hand sides.)

These formulas describe the sensitivity of overall success probability to the basic steps’
probabilities. Even where they are not implemented by an individual tool, they highlight
valuable and intuitive guidelines for users:

1. Sensitivity to an uncertain parameter is mitigated (only) by lowering the success
chance of steps that appear in conjuction (∧) with it.

2. Uncertainty is of low impact for attacks to which high-probability alternatives (∨)
exist. Conversely, exact measurements are important where an attack path appears
much more likely than others.

Naturally, such considerations must be re-evaluated as parameters are refined and ad-
justed in the continuous TRESPASS process.

The discussion so far has concerned sensitivity between the same kind of values — attack
probability to basic probabilities, total cost to individual costs. If we want to consider

2 Alternative uncertainty measures are also discussed in (Rushdi, 1985).
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sensitivity of probability versus costs or vice versa, it is clear, as already stated, that the
respective function will not be continuous. In fact, the Pareto frontier yields the graph of
maximum success probability as a (monotonous, step-wise constant) function of budget.
Therefore, it answers the sensitivity question partially: The closer Pareto-efficient points
fall in one dimension, the more sensitive are the other dimensions to that value: A small
change to it could mean — moving along the Pareto frontier — that one of the other values
changes suddenly.

5.2 Automata Models

When working with a translation to stochastic models such as interactive Markov chains,
Markov automata, and priced timed automata, analytical formulas as above are not avail-
able. A straight-forward approach to sensitivity analysis in this case is to repeat the anal-
ysis over a range of values around an estimated parameter and to examine the resulting
variation in the output.

This technique can be used with any tool in principle. It has been demonstrated with
ATCalc on an example from the literature in (The TRESPASS Project, D3.3.2, 2015), as
well as on the TRESPASS cloud case study (The TRESPASS Project, D7.2.2, 2016) in the
ATCalc video presentation at https://vimeo.com/channels/trespass/143667223.

We can do a bit better than blind trials, however. If our models are to reflect reality, the
results must represent monotonous functions:

• A higher probability on some basic action cannot lead to a lower overall success
probability.

• Vice versa, a lowered basic probability cannot raise overall success probability.

• A lower cost on some basic action cannot decrease overall probability.

• A higher cost cannot increase success probability.

Analogous arguments apply to costs as outputs. This allows discontinuities in the output to
be approached by a process of bisection. Also, interval bounds of an input estimate trans-
late directly to bounds on the output. The cost-optimal reachability analysis of UPPAAL
Cora already takes advantage of this structure by smart branch-and-bound algorithms.
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6 Compositional and Incremental Model
Analysis

The TRESPASS modelling language is organized into three layers — the architecture
layer (the socio-technical model), attack DSL (Attack trees (AT) and Attack-defense trees
(ADtrees)) and analysis models – automata based lower level formalism such as Priced
timed automata (Kumar, Ruijters, & Stoelinga, 2015), Markov automata (Timmer, Ka-
toen, van de Pol, & Stoelinga, 2012), I/O interactive Markov chains (Boudali, Crouzen,
& Stoelinga, 2007). All these layers are tightly bound to each other through interchange
of data formats (The TRESPASS Project, D3.2.1, 2015; The TRESPASS Project, D5.4.2,
2016; The TRESPASS Project, D6.1.2, 2015). The choice of attack trees and attack de-
fense trees as the attack DSL is driven by the fact that they have an intuitive hierarchical
multistep representation of attack scenarios. These models of reality allow brainstorming
and it can be useful to document, brainstorm, and analyze system security. Further they
are flexible and modular. Hence, these artefacts can be easily reused by saving them in
an Attack Pattern Library (The TRESPASS Project, D5.3.2, 2015) .

As the layers in the TRESPASS modelling language are tighly coupled, we do not em-
bed dynamic updates directly into the attack DSLs or the analysis models. However, the
analysis models are themselves compositional which provides a lot of flexibility in terms
of extensibility.

By compositionality, we mean that a model can be built by dividing it into several smaller
sub-models. This keeps the model modular, yielding significant benefits in terms of effi-
ciency and comprehensibility. Thus, even if there is an additional sub-system expressed
as a sub-attack tree, all we need to do is to translate it into a automata and use it in the
larger system.

Compositionality is important in sociotechnical security scenarios as the considered sce-
narios are complex and constructing and analysing them directly usually suffers from state
space explosion (Hahn, Hartmanns, Hermanns, & Katoen, 2013; Crouzen & Lang, 2011).
Thus, instead of composing the whole attack tree at once, we compose smaller sub-trees
in a stepwise fashion and then minimise the state space after each composition using
notions of strong, weak and branching bisimulation, as studied in process algebra. This
keeps the model modular, flexible and easy to extend. Therefore, we circumvent the om-
nipresent state space explosion problem by not constructing a large stochastic model in
the first place. A graphical representation of the approach is shown in Figure 6.4. Here
we see that we first translate each atomic leaf and gate into an automata which is then
composed iteratively.
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In WP3, we developed several automated extraction techniques (The TRESPASS Project,
D3.2.1, 2015) to extract a small analysis model for each element in the attack-defense tree.
The complete analytical model is then obtained as composition of all stochastic models
derived from the components (The TRESPASS Project, D3.2.1, 2015). The reason for
having different formalisms is to analyse different aspects, like time, cost and probability
of attacks. The general idea behind all these techniques is to represent the system as
an automata enumerating all the states and stating the condition of reaching a goal state
in temporal logic formulae. Model-checking algorithms (Baier & Katoen, n.d.) verify the
reachability of the desired states and also provide an example sequence of how to reach
the desired state. Since the extraction method consists of a one to one translation of ele-
ments in the attack tree to behavioural transition diagrams, if a future application requires
a refinement to increasing granularity, one needs just to add the new stochastic model for
the new model– rather than changing the entire model extraction process. Model transfor-
mation techniques are then used to trace back the output to input models, i.e., attack DSL
and sociotechnical model itself.

This incremental approach also provides the means for an efficiency increase in case
we want to propagate a change: for unchanged parts of the attack tree, we can in prin-
ciple reuse previously generated stochastic models, which can be composed with the
partial stochastic model computed for the changed component. This would increase the
response time of the tool, when it is used in an interactive, design explorative mode.

Example. In order to show our compositional analysis methodology, we consider an
ADTree sub-tree (Figure 6.3).The attack defense tree has been manually constructed to
model an ATM compromise. The entire case description is provided in (The TRESPASS
Project, D7.4.2, 2016).

Figure 6.1: STA for top_event.

Consider the two tree nodes: 1) a leaf node (BAS) for example, Blackbox attack and 2)
a top_event- ATM crime as shown in the ADTree given in Figure 6.3. Here by top_event
we refer to the root of the attack-defense tree. We translate each of these two nodes into
an equivalent automata, stochastic timed automaton (STA). Here, we use the STA as our
underlying formalism just to showcase our approach. The viability of different extraction
techniques has already been discussed in (The TRESPASS Project, D3.2.1, 2015).

The stochastic timed automata (STA) representing a BAS is shown in the Figure 6.2 and
consists of the location {Initial, Wait, potentially_undetected, potentially_detected, ongo-
ing, activated, execution, wait_success, success, Failure, stop} and two types of transi-
tions: Time delays governed by probability distributions (here put as invariants lamda and
lambda1 over the locations {activated, ongoing} respectively), and probabilistic transitions
whose weights, like w1 and w2, are specified over the dotted edges to specify the proba-
bility distributions of the discrete transitions.

2016-10-31 ICT-318003 21



6 Compositional and Incremental Model Analysis D3.5.1 v1.0

Figure 6.2: STA for the template of a BAS. Here id is a unique identifier for the BAS and
x is a clock to track the duration of BAS. costs is a global variable to keep
track of all the accumulated costs, costs′ represents the variable costs per
time unit spent in the location and damage is a global variable to keep track of
the accumulated damages. f, v and d are suitable constant values.
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Figure 6.3: An excerpt of an ADTree on ATM crime.

The STA representing the top_event node (shown in Figure 6.1), consists of the locations
– {Initial, waiting_disrupt, Top}. It initializes the system by emitting a broadcast signal
(activate[id]!) and then waits for a broadcast signal disrupt[id]? from its child node. Af-
ter receiving that signal, it makes a transition to the ‘Top’ location, which indicates the
disruption of the AFT. Here, we use a clock x_top that keeps track of the global time.

(a) AFT (b) Translation (c) Composition (d) NSTA

Figure 6.4: Graphical overview of compositional aggregation for AT models.
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Thus, by translating each element of the ADTree into an equivalent STA and composing
them together iteratively using proper broadcast signals, we obtain a network of STAs
(NSTA) (see Figure 6.4). The resulting NSTA is then used to perform model checking, i.e.
we verify the satisfiability of the security metrics formalized as queries over the resulting
NSTA.

At present these automata have been drawn manually, however as explained in section 2,
they can also be generated automatically from the attack DSLs. The output of the analysis
can then be either visualized directly or can be traced back to the attack DSLs (Brandt,
2016).

Tool support Compositional analysis technique is used in the ATCalc and the ATtop
tools. Both these tools have been extensively discussed in (The TRESPASS Project,
D3.4.2, 2016). A video demo of ATCalc can be found at https://vimeo.com/145070436.
Detailed methodology behind the tools is elaborated in (Kumar et al., 2015; The TRES-
PASS Project, D3.2.1, 2015; Arnold, Guck, Kumar, & Stoelinga, 2015).

2016-10-31 ICT-318003 23

https://vimeo.com/145070436


7 Conclusion D3.5.1 v1.0

7 Conclusion

In this deliverable, we have documented several aspects of dynamics that are embedded
at the different stages in the TRESPASS language. We established metamodelling and
the model transformation techniques as one of the key methodologies to establish both
the forward and the backward linkages between the analysis tools and the attack DSLs.

Further, based on the user interactions with the ANM during design exploration (as devel-
oped in WP5 – the TRESPASS process), we summarised how these changes propagate
through all models and data generated in WP3, how they change the analysis, and how
the results are traced back to the ANM. So, any update to the socio-technical model or
a change in the data parameters affect the analysis methodology properly, changes the
analysis results, and can be traced back to the original socio-technical model.

In order to cope with the complexity of the socio-technical models we report on the mod-
ularity of the attack DSLs and its compositional analysis. Additionally, we report in this
deliverable on the sensitivity analysis with respect to data parameters, which can system-
atically and robustly reduce the number of spurious and irrelevant attack scenarios, e.g.,
small variations over the same basic attack.
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